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An Exploration of Prompt-Based Biases in AI Art-Generated Tools
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With the growing popularity of AI art-generating tools, the biases in their outcomes have become an increasingly important issue.
While prior research focused on how to generate more realistic or aesthetic art, more work is required on the techniques for mitigating
biased outcomes. Given that these systems commonly take text-based input, we explore the effects of prompt formulation of the
appearance of such biases. We first discuss the early results of the analysis of public discourse and users’ observations on these
effects; we then illustrate the identified associations through a comparative analysis of outcomes from two popular prompt-based AI
art-generating tools, showing gender and racial bias variations based on the use of certain keywords in prompts.
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1 INTRODUCTION AND BACKGROUND

AI-powered tools have spread in every aspect of life, including algorithmic decision-making for job [12], mortgage
approval [39], higher education [5], criminal prediction [20], support creativity through AI art generation [7], collabora-
tive writing [17], etc. Recent research, however, repeatedly demonstrated that the outcomes from such algorithm-driven
tools are often biased [4, 6, 23, 33]. For instance, in existing AI decision-making tools, researchers have identified
gender, race, and cultural biased tools [21, 23, 33]. Similarly, biases were noted in the outcomes of AI art-generating
tools [31, 35], recently gaining in popularity in supporting creative tasks. However, the majority of the recent research
on AI art generation tools was conducted to understand how to generate accurate images [10, 15, 18, 27], and less
attention was paid to biases in AI art generation outcomes [7, 10, 15, 18, 27].

With the emerging use of AI-based tools, it becomes increasingly important to mitigate the potential harm introduced
by biased outcomes [22]. In the effort to reduce such biases, researchers have been actively exploring several approaches,
including the development of bias mitigation frameworks [30], designing explainable AI systems [19] to increase
systems’ transparency [3], etc. This research is predominantly focused on the system-driven sources of the biases.
For instance, exploring biases in outcomes of AI systems for decision-making [16], prior research has identified such
sources as biased data sets, an underrepresented group in the trained data, inappropriate data labeling, wrong data
analysis model for wrong data or circumstances, biases of the system programmers, etc. [4, 6, 31, 33]. At the same time,
one of the important characteristics of AI art-generation tools is defined by the format of user input for these systems:
most commonly through free-form text prompts. User observations reflected in the public media discourse (e.g. [28, 29])
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2 Nabila Chowdhury and Anastasia Kuzminykh

suggest potential effects of the text prompts used with the art-generation tools and the appearance of biases in their
outcomes, however, currently, there is a paucity of research on such effects.

Most research on the relationships between user-formulated queries and the specifics of the corresponding outcomes
can be found in the field of information retrieval. For example, Sanchiz et al. [32] identified in their study that
longer formulation of the queries perform worse than shorter ones during web searches. Other research shows that
formulating queries in a request format (e.g., “may I, should I") might not give the expected output [34]. Keyvan and
Huang [14] showed that reformulating queries with certain keywords (e.g., instead of searching “java", searching “java
programming language") might give users better web results. In a similar vein, Zamani et al. [38] identified that the
query formulation that often lacks context and keywords due to users’ lack of expertise in the area results in ambiguous
output. Papenmeier [25] discussed how the pattern of query formation varies between a novice and an expert in the
context of online retail, particularly due to the incorporation of certain keywords, which results in better output.

To begin exploring the potential association of prompt formation with the appearance of biases in AI-generated art,
we conducted an initial study by analyzing online discussions about prompts and AI art generation tools on publicly
available media outlets. We focused on the following questions: 1) Whether and how people discuss biases in association
with prompts; and 2) What prompt variations do people note in association with those biased outcomes? We found that
people discuss biases in association with the prompt variations, most commonly noting gender and racial bias. People
also discuss how varying certain words associated with cultural stereotypes in a prompt generate different outcomes.
We then compared the outcomes generated by common AI art generation tools (DALL-E1 and Stable Diffusion2) in
response to the prompts variations informed by the first study. We discuss our early findings, provide early illustrations
of the prompt variation effects through a comparative analysis of the art outcomes, and outline the implications of this
research direction for human-AI interaction.

2 EARLY ANALYSIS OF PUBLIC DISCOURSE

To understand public discourse around biases in prompt-based AI art-generation tools, we collected discussions from
Reddit3, Twitter4, and blog platforms, using the following search keywords: prompts for DALL-E, prompts for Stable
Diffusion, prompts for AI art generation, biases in AI art generation tool, biases in DALL-E, biases in Stable Diffusion,
DALL-E, and Stable Diffusion. Through this process, we identified 145 unique public conversation points (Reddit: 76,
Twitter:52, Blogs: 17) regarding AI art generation and biases. We then excluded general discussions around bias and AI,
posts purely sharing prompts, and posts in which the comment section had age restrictions, which resulted in a final
dataset of 51 unique discussions (Reddit: 21, Twitter: 20: Blogs: 10) containing 102 unique discussion points. The final
dataset was then thematically analyzed by two members of the research team using reflexive analysis approach.

Our analysis first showed that people discuss biases in AI art generation tools in association with prompts, most
commonly gender and racial bias, along with economical and political biases. For instance, discussing the association of
prompts with gender-biased outcomes, one user shared different outcomes of "handsome man" vs. "beautiful woman":
highly edited, portrait-style images of women compared to the images generated for men. In this discussion, other users
commented on their own idea of what "handsome" and "beautiful" means [26] and noted that most of the outputs would
not include arts of certain demographics (e.g., Asian). We also found prominent discussions of racial bias, e.g., “Where
demographic parity = 25%, perceived female figures with darker skin tones are produced 4% of the time; perceived male
1https://openai.com/dall-e-2/
2https://stablediffusionweb.com/
3https://https://www.reddit.com/
4https://https://twitter.com/
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Fig. 1. (a) Example of Racial Bias in DALL-E and (b) Example of Racial Bias in Stable Diffusion

figures with darker skin tones are produced 3% of the time." Another user noted, “Westerners post Asian people only if
they specifically looked for art with them." Racial bias is also discussed in these platforms in relation to the styles of
the outcome. For example, articles have noted how outputs of these art-generating tools might seem Westernized or
European even though the style is not mentioned in the prompts [8, 36].

We also analyzed the prompt variations discussed by users. We first found the discussed associations between
sexist outcomes use of certain job types with assertive words as prompts [28, 29], e.g., “Including search terms like
“CEO” exclusively generates images of white-passing men in business suits, while using the word “nurse” or “personal
assistant” prompts the system to create images of women" [28]. Stereotypes on gender-based roles are also noted in the
analyzed blog articles [1, 24, 36, 37], e.g., “To portray gender biases in Stable Diffusion, prompts are selected whose
outputs reflect possible gender biases: a face of an intelligent person, a face of a kind person, [...] a face of a passionate
person" [24]. Another example is, "[...] these generators can often be based on stereotypical biases, [...] images can often
be Westernized, or show favor to certain genders or races, depending on the types of phrases used [1]." We also found
this theme in the user discussions on certain prompts, e.g. “Even the weakest link to womanhood or some aspect of
what is traditionally conceived as feminine returned pornographic imagery". Overall, users discuss the relationship
between biased generated art and variation of culturally stereotyped words (mostly adjectives) used in prompts.

3 COMPARATIVE ANALYSIS OF AI ART GENERATION TOOLS

We conducted a comparative analysis of AI-generated art prompted by the corresponding variations of prompts. We
choose to use DALL-E and Stable Diffusion, as they generate outcomes by taking text-based prompts. We formulated
two prompts under the two common themes identified from the media discourse analysis: gender and racial bias.
We formulated an initial prompt and two variations of it, using early findings from phase 1, to see if that varies
the appearance of biases in the outcomes. The initial prompts we used were: racial bias - “Refugee receiving online
education”; gender bias - “Assertive Professor”; along with two variations for each prompt (see Fig 1 and Fig 2) The
prompt variations were introduced through alternating certain adjectives, identified as stereotypical in phase 1. We first
provided both tools with the initial prompts followed by two prompt variations.

For the first set of prompts, all the prompts contained the word ‘refugee’ which is found (from early analysis of public
discourse) to have a racial stereotypical meaning. This racial stereotypical meaning was also reflected in outcomes
generated both by DALL-E and Stable Diffusion for the initial prompt. In variation 1, only by changing the keyword

Manuscript submitted to ACM
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Fig. 2. (a) Example of Gender Bias in DALL-E and (b) Example of Gender Bias in Stable Diffusion

‘online’ to ‘art’ in the initial prompt, we noticed for DALL-E the appearance of racial outcomes changed by incorporating
1 different racial representative image. Although for Stable Diffusion the biased racial outcomes did not change with the
prompt variation, the appearance of the bias reflected a certain demographic (only women and children). In variation
2, we combined the word ‘caring’ with refugee, as from early analysis of public discussion we identified gender bias
associated with the word ‘caring’. In association with this prompt, the appearance of biased outcomes changed for
DALL-E from racial to racial and age-related. The appearance of racial and demographic bias remains the same for
Stable Diffusion in relation to the prompt variation 2.

For the second set of prompts, which contained the keyword ‘professor’ (associated with gender stereotypes related
to profession from our early analysis), we varied three adjectives to see their relationship to the appearances of biases in
the generated outcomes. In association with the initial prompt variation (a stereotypical adjective ‘assertive’ with gender
stereotypes associated word ‘professor’) we saw gender- and racially-biased appearances in both DALL-E and Stable
Diffusion generated outcomes. With the adjective ‘self-assured’, the appearance of racial and gender bias remained the
same in both AI tools and with the adjective ‘caring’, while the gender-biased appearance remained the same in DALL-E
generated outcomes, the racial appearance had changed. The appearance of gender bias in Stable Diffusion generated
outcomes had significantly changed, however, the racial bias in the appearance of those outcomes was prevalent.

This early comparative analysis illustrates that the appearance of biased outcomes varies in association with the
prompt variations. We found when the prompts are formulated with varied stereotyped adjectives, the appearance of
the biased outcome also changed for both DALL-E and Stable Diffusion, although varies across the two selected AI art
generation platforms.

4 CONCLUSION

Current AI art generation tools provide a creative collaboration between humans and AI, although the outcome has
biases. Such biases were discussed by designers, artists, and people. In July 2022, OpenAI [2] shared the news on
implementing a mitigation technique to reflect diversity on the outcomes when input is given a generic word such as,
"Firefighter" and "Teacher"; however, in our prompt exploration, we found how on the "Professor" DALL-E generated
biased results. Thus, it is important to continue exploring the appearance of biases in association with prompts used for
art-generating tools, especially as AI art is being integrated into popular platforms like TikTok [11], Canva [9], and
being used to design content on the internet [13]. The development of a better understanding of how users formulate
Manuscript submitted to ACM
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their prompts to generate art and which aspects of a prompt trigger biased outcomes would allow us to design for
guiding users in formulating prompts to avoid biased outcomes.
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